Demonstrate understanding of equilibrium principles in aqueous systems survey

This shows what has come up over the last 7 years. It might not be 100% comprehensive or 100% accurate as many questions cover multiple ideas but will be a good start.

Content	2021	2020	2019	2018	2017	2016	2015	2014
Write equation for equilibrium occurring in	1							
a saturated solution	v	~	~	V	✓ x2		~	~
Write K _s expression	1					/		
(AB, AB ₂ or A_2B)	v	~	~	V	~	v	~	~
Calculate s from K_s for AB_2 or AB type solid	✓	✓	✓	✓	✓		✓	✓
Calculate s from K_s for AB_2 type solid and								1
give conc. of [A ²⁺] and [B ⁻]			v					v
Calculate the solubility for AB ₂ type solid at		1						
a given pH		v						
Calculate mass of sparingly soluble solid								
that will dissolve to make saturated soln.						v		
Predict if a precipitate will form when								
unequal volumes of solutions are mixed	v	v	v	•				
Predict if a precipitate will form when a								
mass of solid is added to a solution								v
Show that a ppt. will form when unequal or								
equal volumes of solutions are mixed						v	v	
Predicting if a ppt will form; pH used to								
calculate [OH ⁻]			v					
Explaining the effect on solubility of a								
sparingly soluble solid: common ion	v			•	v			
Calculate the concentration of an ion on	~				~			
addition of a common ion	•				•			
Explaining the effect on solubility of a		~	1			\checkmark		
sparingly soluble solid: complex ion		•	·			·		
Equation for formation of complex ion:		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark
May be with OH ⁻ (@ high pH)		•		•		·		-
Explaining the effect on solubility of a		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
sparingly soluble solid: low pH / H_3O^+		•		•	•		-	-
Equations to show effect on solubility of a		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
sparingly soluble solid: low pH / H_3O^+		-						-
Calculate 'new' conc of OH ⁻ in solution due			\checkmark					
to addition of a common ion								
pH range of a buffer solution (given a pK_a		\checkmark		\checkmark				
value)								
Identify which of 2 buffer solutions has			\checkmark					
lower pH based on pK_a values			-					
Explaining how buffers resist changes in pH								
on addition of small amounts of H_3O^+ or	\checkmark	\checkmark						\checkmark
OH-								
Writing equations to show addition of OH ⁻			\checkmark					\checkmark
to a buffer solution			-					-
Writing equations to show addition of $\rm H_3O^+$		\checkmark		\checkmark				
to a buffer solution		•		-				

Content		2020	2019	2018	2017	2016	2015	2014
Buffer pH calculation: addition of given								
mass of solid (assume no vol. change)		v		¥				
Buffer pH calculation: mass of solid to	.(
make given pH (assume no vol. change)	v							v
Buffer pH calculation; ratio of RCOONa &								
RCOOH / $NH_3 \& NH_4^+ / F^-/HF$			v		v		v	
Explaining whether a buffer will be more								
effective on addition of H_3O^+ or OH^-		v	v	v	•		•	
Explaining the effect on pH if a buffer								
solution is diluted with water	v		v					
Reading a volume off a titration curve to								
find a buffer solution of a specified pH				¥				
Write an equation for the reaction of HF					.(
with water (recall HF is a weak acid)					v			
Write equation for the reaction of a given								
WA with water								v
Write equation for the reaction of HBr with								
water (recall HBr is a strong acid)					V			
Write an equation for the reaction of RNH ₂								
with water						V		
Write equations for dissolving and reaction								
of RNH ₃ Cl with water							~	
Ranking solutions in order of (decreasing)								
рН		~						
Justifying ranking solutions in order of								
(decreasing) pH		v						
Explaining pH and electrical conductivity of							.(
solutions from pH & conductivity info.							v	
Comparing pH and electrical conductivity								
of solutions from pK _a information	v							
Calculate concentration of a salt from its								
рН		~						
Calculate pH of an acidic salt solution								
RNH ₃ Cl							~	
List all the species present in a solution of a								
basic salt RCOONa		v						
List / justify species present in a weak acid	.(
solution in order of dec. conc.	v							v
Compare pHs of two weak acids of same								
concentration from pK_a values (no calc)								v
List / justify species present acidic salt								
RNH₃Cl (aq) in order of dec. conc.						v	v	
List all the species in a solution halfway to								
equivalence point volume			~			V		
Explain significance of pH in a solution								1
halfway to EP volume / buffering ability			v			V		v
Calculate the pH of a solution of basic salt				1				
RCOONa		•		•				
Select indicator most suited to identify the	1		1		1			
EP	v		v		v			

Content		2020	2019	2018	2017	2016	2015	2014
Justify choice of indicator / consequences								
of using other indicators	V		~					
Explain / evaluate electrical conductivity of								
solutions (SA and WA)					v			
Explain / evaluate electrical conductivity of								
solutions (SA and basic salt)		v						
Explain / evaluate electrical conductivity of								
solutions (WA and acidic salt)			v					
Explain / evaluate electrical conductivity of								
solutions (WB and acidic salt)				v				v
Calculate the concentration of a weak acid								
from K_a and $[H_3O^+] / pH$	v		v		v			
Calculate the pH of a weak base from								
concentration and $pK_a(BH^+)$ or $K_a(BH^+)$					•	•		
Calculate the conc. of a weak base from pH								
and <i>K</i> _a (BH ⁺) value								•
Calculate the pH at the equivalence point	1	1	1	1		1		
of a titration curve	•	•	•	•		•		
Explain why pH of titration curve of WB/SA						1	~	
is not at pH 7								
Listing all the species at equivalence point				\checkmark			\checkmark	
in decreasing concentration order							-	
Listing all the species at equivalence point					\checkmark			\checkmark
(order not needed)								-
Calculate the pH at a volume past the	\checkmark		\checkmark				\checkmark	
equivalence point of a titration curve								
Calculate the pH at a volume before the EP					\checkmark			
of a titration curve (not @pH = pK_a)								
Compare/contrast pH at equivalence point		✓			\checkmark		\checkmark	
given K _a values of different WA								
Explain why, after EP, the pH of solution	\checkmark							
added is different from its original pH								

Spare rows for any that have been missed.