Demonstrate understanding of equilibrium principles in aqueous systems survey

This shows what has come up over the last 7 years. It might not be 100% comprehensive or 100% accurate as many questions cover multiple ideas but will be a good start.

Content	2021	2020	2019	2018	2017	2016	2015	2014
Write equation for equilibrium occurring in a saturated solution	\checkmark	\checkmark	\checkmark	\checkmark	$\checkmark \times 2$		\checkmark	\checkmark
Write K_{s} expression ($A B, A B_{2}$ or $A_{2} B$)	\checkmark							
Calculate s from K_{s} for $A B_{2}$ or $A B$ type solid	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Calculate s from K_{s} for $A B_{2}$ type solid and give conc. of $\left[\mathrm{A}^{2+}\right]$ and $\left[\mathrm{B}^{-}\right]$			\checkmark					\checkmark
Calculate the solubility for $A B_{2}$ type solid at a given pH		\checkmark						
Calculate mass of sparingly soluble solid that will dissolve to make saturated soln.						\checkmark		
Predict if a precipitate will form when unequal volumes of solutions are mixed	\checkmark	\checkmark	\checkmark	\checkmark				
Predict if a precipitate will form when a mass of solid is added to a solution								\checkmark
Show that a ppt. will form when unequal or equal volumes of solutions are mixed						\checkmark	\checkmark	
Predicting if a ppt will form; pH used to calculate $\left[\mathrm{OH}^{-}\right]$			\checkmark					
Explaining the effect on solubility of a sparingly soluble solid: common ion	\checkmark			\checkmark	\checkmark			
Calculate the concentration of an ion on addition of a common ion	\checkmark				\checkmark			
Explaining the effect on solubility of a sparingly soluble solid: complex ion		\checkmark	\checkmark			\checkmark		
Equation for formation of complex ion: May be with OH^{-}(@ high pH)		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark
Explaining the effect on solubility of a sparingly soluble solid: low $\mathrm{pH} / \mathrm{H}_{3} \mathrm{O}^{+}$		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
Equations to show effect on solubility of a sparingly soluble solid: low $\mathrm{pH} / \mathrm{H}_{3} \mathrm{O}^{+}$		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark
Calculate 'new' conc of OH^{\prime} in solution due to addition of a common ion			\checkmark					
pH range of a buffer solution (given a $\mathrm{p} K_{a}$ value)		\checkmark		\checkmark				
Identify which of 2 buffer solutions has lower pH based on $\mathrm{p} \mathrm{K}_{\mathrm{a}}$ values			\checkmark					
Explaining how buffers resist changes in pH on addition of small amounts of $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}	\checkmark	\checkmark						\checkmark
Writing equations to show addition of OH^{-} to a buffer solution			\checkmark					\checkmark
Writing equations to show addition of $\mathrm{H}_{3} \mathrm{O}^{+}$ to a buffer solution		\checkmark		\checkmark				

Content		2020	2019	2018	2017	2016	2015	2014
Buffer pH calculation: addition of given mass of solid (assume no vol. change)		\checkmark		\checkmark				
Buffer pH calculation: mass of solid to make given pH (assume no vol. change)	\checkmark							\checkmark
Buffer pH calculation; ratio of RCOONa \& $\mathrm{RCOOH} / \mathrm{NH}_{3} \& \mathrm{NH}_{4}{ }^{+} / \mathrm{F} / \mathrm{HF}$			\checkmark		\checkmark		\checkmark	
Explaining whether a buffer will be more effective on addition of $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Explaining the effect on pH if a buffer solution is diluted with water	\checkmark		\checkmark					
Reading a volume off a titration curve to find a buffer solution of a specified pH				\checkmark				
Write an equation for the reaction of HF with water (recall HF is a weak acid)					\checkmark			
Write equation for the reaction of a given WA with water								\checkmark
Write equation for the reaction of HBr with water (recall HBr is a strong acid)					\checkmark			
Write an equation for the reaction of RNH_{2} with water						\checkmark		
Write equations for dissolving and reaction of $\mathrm{RNH}_{3} \mathrm{Cl}$ with water							\checkmark	
Ranking solutions in order of (decreasing) pH		\checkmark						
Justifying ranking solutions in order of (decreasing) pH		\checkmark						
Explaining pH and electrical conductivity of solutions from pH \& conductivity info.							\checkmark	
Comparing pH and electrical conductivity of solutions from pK_{a} information	\checkmark							
Calculate concentration of a salt from its pH		\checkmark						
Calculate pH of an acidic salt solution $\mathrm{RNH}_{3} \mathrm{Cl}$							\checkmark	
List all the species present in a solution of a basic salt RCOONa		\checkmark						
List / justify species present in a weak acid solution in order of dec. conc.	\checkmark							\checkmark
Compare pHs of two weak acids of same concentration from $\mathrm{p} K_{\mathrm{a}}$ values (no calc)								\checkmark
List / justify species present acidic salt $\mathrm{RNH}_{3} \mathrm{Cl}(\mathrm{aq})$ in order of dec. conc.						\checkmark	\checkmark	
List all the species in a solution halfway to equivalence point volume			\checkmark			\checkmark		
Explain significance of pH in a solution halfway to EP volume / buffering ability			\checkmark			\checkmark		\checkmark
Calculate the pH of a solution of basic salt RCOONa		\checkmark		\checkmark				
Select indicator most suited to identify the EP	\checkmark		\checkmark		\checkmark			

Content		2020	2019	2018	2017	2016	2015	2014
Justify choice of indicator / consequences of using other indicators	\checkmark		\checkmark					
Explain / evaluate electrical conductivity of solutions (SA and WA)					\checkmark			
Explain / evaluate electrical conductivity of solutions (SA and basic salt)		\checkmark						
Explain / evaluate electrical conductivity of solutions (WA and acidic salt)			\checkmark					
Explain / evaluate electrical conductivity of solutions (WB and acidic salt)				\checkmark				\checkmark
Calculate the concentration of a weak acid from K_{a} and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] / \mathrm{pH}$	\checkmark		\checkmark		\checkmark			
Calculate the pH of a weak base from concentration and $\mathrm{p} K_{a}\left(\mathrm{BH}^{+}\right)$or $K_{a}\left(\mathrm{BH}^{+}\right.$					\checkmark	\checkmark		
Calculate the conc. of a weak base from pH and $K_{a}\left(\mathrm{BH}^{+}\right)$value								\checkmark
Calculate the pH at the equivalence point of a titration curve	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Explain why pH of titration curve of $\mathrm{WB} / \mathrm{SA}$ is not at pH 7						\checkmark	\checkmark	
Listing all the species at equivalence point in decreasing concentration order				\checkmark			\checkmark	
Listing all the species at equivalence point (order not needed)					\checkmark			\checkmark
Calculate the pH at a volume past the equivalence point of a titration curve	\checkmark		\checkmark				\checkmark	
Calculate the pH at a volume before the EP of a titration curve (not @pH=pKa)					\checkmark			
Compare/contrast pH at equivalence point given K_{a} values of different WA		\checkmark			\checkmark		\checkmark	
Explain why, after EP, the pH of solution added is different from its original pH	\checkmark							

Spare rows for any that have been missed.

